If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-7p-p=0
We add all the numbers together, and all the variables
3p^2-8p=0
a = 3; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·3·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*3}=\frac{0}{6} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*3}=\frac{16}{6} =2+2/3 $
| 8(5-7s)=19 | | 3x-2x+8=8 | | 11=1.3v+0.04v^2 | | 6n^2+18n=108 | | (x−5)^2=180 | | 8+4x8-8=x-5 | | −6+4r=2(r−4) | | |4x+3|=17 | | 2x+2.1=9.9 | | 3(y+4)-(y-2)=-7 | | n+9/7-3/2n=2/7 | | 5/3x=7/2-5/6 | | 49^3r+2*343^r+1=49^-3r | | (x−5)2=180 | | -3x+17=-28 | | 4x2+18x+18=0 | | -3(m-5)-2m=0 | | -3(5+n)=12 | | 17-5x=2x-6 | | -2/5x-4=8+3/5x | | 3k+4=9k+6 | | 6x+5x-30=75-4x | | -x-4=-6x-49 | | D/5-g=9 | | 4/5/16/20=14/n | | 1600=960t | | 11+3(x+12)=32 | | -32-x=4 | | 30+15x=105 | | 41790/210+5=t | | 14=15x | | 4-(5x-3)=-5x+1 |